Skip to main content

Intent System

The Intent System is a sophisticated capability discovery and message routing mechanism in PAF-Core that enables agents to automatically discover, understand, and route messages to the most appropriate agent based on intent recognition and capability matching.

Overview

The Intent System provides intelligent message routing by:

  • 🧠 Intent Recognition - Understanding what agents want to accomplish
  • 🔍 Capability Discovery - Finding agents with the right capabilities
  • 🎯 Smart Routing - Directing messages to the most suitable agent
  • 🔄 Fallback Handling - Graceful degradation when no perfect match exists

Core Concepts

Intent Recognition

Intent recognition analyzes incoming messages to understand the user's or agent's intent:

# Intent recognition example
intent = intent_system.recognize_intent(
message="I need help with data analysis",
context={"user_id": "user123", "session_id": "session456"}
)

# Result
{
"intent": "data_analysis",
"confidence": 0.95,
"entities": {
"task": "data analysis",
"urgency": "normal"
},
"capabilities_required": ["data_processing", "statistical_analysis"]
}

Capability Discovery

Agents register their capabilities with the intent system:

# Agent capability registration
agent_capabilities = {
"agent_id": "data-analyst-001",
"capabilities": [
{
"name": "data_processing",
"description": "Process and clean datasets",
"confidence": 0.9,
"supported_formats": ["csv", "json", "parquet"]
},
{
"name": "statistical_analysis",
"description": "Perform statistical analysis and modeling",
"confidence": 0.95,
"supported_methods": ["regression", "classification", "clustering"]
}
],
"availability": "online",
"load_factor": 0.3
}

Message Routing

The intent system routes messages to the most appropriate agent:

# Message routing
routing_result = intent_system.route_message(
intent="data_analysis",
required_capabilities=["data_processing", "statistical_analysis"],
context={"user_id": "user123"}
)

# Result
{
"target_agent": "data-analyst-001",
"confidence": 0.92,
"routing_reason": "Best capability match",
"fallback_agents": ["data-analyst-002", "general-ai-001"]
}

Intent Recognition Engine

Natural Language Processing

The intent recognition engine uses advanced NLP techniques:

class IntentRecognitionEngine:
def __init__(self):
self.nlp_model = load_pretrained_model("intent-classifier-v2")
self.entity_extractor = EntityExtractor()
self.context_analyzer = ContextAnalyzer()

def recognize_intent(self, message, context=None):
# Preprocess message
processed_message = self.preprocess(message)

# Extract entities
entities = self.entity_extractor.extract(processed_message)

# Analyze context
context_features = self.context_analyzer.analyze(context or {})

# Classify intent
intent_prediction = self.nlp_model.predict(
processed_message, entities, context_features
)

return {
"intent": intent_prediction.intent,
"confidence": intent_prediction.confidence,
"entities": entities,
"context_features": context_features
}

Intent Categories

The system recognizes various intent categories:

CategoryDescriptionExamples
data_analysisData processing and analysis"Analyze this dataset", "Create a report"
communicationAgent-to-agent communication"Send message to agent X", "Broadcast update"
task_delegationAssigning tasks to other agents"Delegate this task", "Find someone to help"
information_requestRequesting information"What's the status?", "Get latest data"
collaborationMulti-agent collaboration"Work together on this", "Coordinate response"
monitoringSystem monitoring and health"Check system status", "Monitor performance"

Entity Extraction

The system extracts relevant entities from messages:

# Entity extraction example
entities = intent_system.extract_entities(
"Analyze the sales data from last quarter and create a visualization"
)

# Result
{
"task": "analyze",
"data_type": "sales data",
"timeframe": "last quarter",
"output": "visualization",
"urgency": "normal"
}

Capability Registry

Agent Registration

Agents register their capabilities with the system:

# Agent capability registration
class CapabilityRegistry:
def __init__(self):
self.agents = {}
self.capability_index = {}

def register_agent(self, agent_id, capabilities):
"""Register agent capabilities"""
self.agents[agent_id] = {
"capabilities": capabilities,
"status": "online",
"last_seen": datetime.now(),
"load_factor": 0.0
}

# Update capability index
for capability in capabilities:
if capability["name"] not in self.capability_index:
self.capability_index[capability["name"]] = []
self.capability_index[capability["name"]].append(agent_id)

def find_agents_by_capability(self, capability_name):
"""Find agents with specific capability"""
return self.capability_index.get(capability_name, [])

def get_best_agent(self, required_capabilities, context=None):
"""Find the best agent for given capabilities"""
candidates = []

for capability in required_capabilities:
agents = self.find_agents_by_capability(capability)
candidates.extend(agents)

# Score and rank candidates
scored_candidates = []
for agent_id in set(candidates):
score = self._calculate_agent_score(agent_id, required_capabilities, context)
scored_candidates.append((agent_id, score))

# Return best match
return max(scored_candidates, key=lambda x: x[1])

Capability Matching

The system matches required capabilities with available agents:

def calculate_capability_match(agent_capabilities, required_capabilities):
"""Calculate how well an agent matches required capabilities"""
matches = 0
total_required = len(required_capabilities)

for required in required_capabilities:
for agent_cap in agent_capabilities:
if (agent_cap["name"] == required["name"] and
agent_cap["confidence"] >= required["min_confidence"]):
matches += 1
break

return matches / total_required if total_required > 0 else 0

Message Routing

Routing Strategies

The system supports multiple routing strategies:

1. Capability-Based Routing

def route_by_capability(intent, required_capabilities):
"""Route based on capability matching"""
candidates = capability_registry.find_agents_by_capability(
required_capabilities[0]
)

best_match = None
best_score = 0

for agent_id in candidates:
score = calculate_capability_match(
capability_registry.get_agent_capabilities(agent_id),
required_capabilities
)
if score > best_score:
best_score = score
best_match = agent_id

return best_match, best_score

2. Load-Based Routing

def route_by_load(intent, required_capabilities):
"""Route based on agent load and availability"""
candidates = capability_registry.find_agents_by_capability(
required_capabilities[0]
)

# Filter by availability and load
available_agents = [
agent_id for agent_id in candidates
if capability_registry.is_agent_available(agent_id)
]

if not available_agents:
return None, 0

# Choose agent with lowest load
best_agent = min(available_agents, key=lambda x:
capability_registry.get_agent_load(x)
)

return best_agent, 1.0

3. Context-Aware Routing

def route_by_context(intent, required_capabilities, context):
"""Route based on context and history"""
candidates = capability_registry.find_agents_by_capability(
required_capabilities[0]
)

# Score based on context
scored_candidates = []
for agent_id in candidates:
score = calculate_context_score(agent_id, context)
scored_candidates.append((agent_id, score))

# Return best match
return max(scored_candidates, key=lambda x: x[1])

Fallback Mechanisms

When no perfect match is found, the system provides fallback options:

def route_with_fallback(intent, required_capabilities, context):
"""Route with fallback mechanisms"""
# Try primary routing
primary_agent, confidence = route_by_capability(intent, required_capabilities)

if confidence >= 0.8:
return primary_agent, confidence

# Try fallback routing
fallback_agents = []

# 1. Partial capability match
partial_matches = find_partial_capability_matches(required_capabilities)
fallback_agents.extend(partial_matches)

# 2. General purpose agents
general_agents = find_general_purpose_agents()
fallback_agents.extend(general_agents)

# 3. Human escalation
if not fallback_agents:
return "human-escalation", 0.1

# Choose best fallback
best_fallback = max(fallback_agents, key=lambda x: x[1])
return best_fallback[0], best_fallback[1]

Intent Learning

Continuous Learning

The intent system continuously learns from interactions:

class IntentLearner:
def __init__(self):
self.feedback_buffer = []
self.model_updater = ModelUpdater()

def record_interaction(self, message, intent, outcome, feedback):
"""Record interaction for learning"""
interaction = {
"message": message,
"predicted_intent": intent,
"outcome": outcome,
"feedback": feedback,
"timestamp": datetime.now()
}
self.feedback_buffer.append(interaction)

def update_model(self):
"""Update intent recognition model"""
if len(self.feedback_buffer) >= 100:
training_data = self.prepare_training_data()
self.model_updater.update(training_data)
self.feedback_buffer.clear()

Feedback Integration

The system integrates feedback to improve routing:

def integrate_feedback(agent_id, message, outcome, feedback):
"""Integrate feedback to improve routing"""
# Update agent performance metrics
agent_metrics = get_agent_metrics(agent_id)
agent_metrics.update_performance(outcome, feedback)

# Update capability confidence
if feedback["satisfaction"] > 0.8:
increase_capability_confidence(agent_id, feedback["capabilities"])
else:
decrease_capability_confidence(agent_id, feedback["capabilities"])

# Update routing preferences
update_routing_preferences(agent_id, feedback)

Advanced Features

Multi-Agent Collaboration

The intent system can coordinate multiple agents:

def coordinate_multi_agent_task(intent, required_capabilities):
"""Coordinate multiple agents for complex tasks"""
# Find agents for each capability
agent_assignments = {}
for capability in required_capabilities:
agents = find_agents_by_capability(capability["name"])
if agents:
agent_assignments[capability["name"]] = agents[0]

# Create collaboration plan
collaboration_plan = {
"task_id": generate_task_id(),
"agents": agent_assignments,
"coordination_strategy": "sequential", # or "parallel", "pipeline"
"communication_protocol": "grpc"
}

return collaboration_plan

Intent Chaining

The system can chain intents for complex workflows:

def chain_intents(initial_intent, context):
"""Chain multiple intents for complex workflows"""
intent_chain = [initial_intent]
current_context = context

while True:
next_intent = predict_next_intent(intent_chain, current_context)
if not next_intent or next_intent["confidence"] < 0.7:
break

intent_chain.append(next_intent)
current_context = update_context(current_context, next_intent)

return intent_chain

Dynamic Capability Discovery

The system can discover new capabilities dynamically:

def discover_new_capabilities(agent_id, interactions):
"""Discover new capabilities from agent interactions"""
capability_patterns = analyze_interaction_patterns(interactions)
new_capabilities = []

for pattern in capability_patterns:
if pattern["confidence"] > 0.8:
new_capability = {
"name": pattern["capability_name"],
"description": pattern["description"],
"confidence": pattern["confidence"],
"examples": pattern["examples"]
}
new_capabilities.append(new_capability)

return new_capabilities

Configuration

Intent System Configuration

# intent-system-config.yaml
intent_system:
recognition:
model: "intent-classifier-v2"
confidence_threshold: 0.7
max_intents: 10

routing:
strategy: "capability_based" # or "load_based", "context_aware"
fallback_enabled: true
max_fallback_depth: 3

learning:
enabled: true
feedback_buffer_size: 100
update_frequency: "daily"

capabilities:
auto_discovery: true
confidence_decay: 0.95
min_confidence: 0.5

Agent Configuration

# agent-intent-config.yaml
agent:
intent_system:
enabled: true
capabilities:
- name: "data_analysis"
confidence: 0.9
description: "Analyze datasets and generate insights"
- name: "report_generation"
confidence: 0.85
description: "Generate reports and visualizations"

routing_preferences:
preferred_agents: ["data-analyst-001", "report-generator-002"]
fallback_agents: ["general-ai-001"]

learning:
feedback_enabled: true
capability_auto_update: true

Monitoring and Analytics

Intent Analytics

class IntentAnalytics:
def __init__(self):
self.metrics = {}

def track_intent_recognition(self, intent, confidence, outcome):
"""Track intent recognition performance"""
self.metrics["intent_recognition"] = {
"total_requests": self.metrics.get("total_requests", 0) + 1,
"success_rate": self.calculate_success_rate(),
"average_confidence": self.calculate_average_confidence(),
"top_intents": self.get_top_intents()
}

def track_routing_performance(self, agent_id, success, response_time):
"""Track routing performance"""
self.metrics["routing_performance"] = {
"agent_success_rates": self.calculate_agent_success_rates(),
"average_response_time": self.calculate_average_response_time(),
"routing_accuracy": self.calculate_routing_accuracy()
}

Performance Metrics

def get_intent_system_metrics():
"""Get comprehensive intent system metrics"""
return {
"recognition_accuracy": 0.92,
"routing_success_rate": 0.89,
"average_response_time": 0.15,
"capability_coverage": 0.85,
"learning_rate": 0.03,
"fallback_usage": 0.12
}

Troubleshooting

Common Issues

1. Low Intent Recognition Accuracy

Symptoms: Intent recognition confidence below threshold

Solutions:

# Increase training data
intent_system.add_training_data(new_examples)

# Adjust confidence threshold
intent_system.set_confidence_threshold(0.6)

# Update model
intent_system.retrain_model()

2. Poor Routing Performance

Symptoms: Messages routed to wrong agents

Solutions:

# Update capability registry
capability_registry.refresh_agent_capabilities()

# Adjust routing strategy
intent_system.set_routing_strategy("context_aware")

# Add fallback mechanisms
intent_system.enable_fallback_routing()

3. Slow Response Times

Symptoms: Intent recognition taking too long

Solutions:

# Optimize model
intent_system.optimize_model()

# Cache frequent intents
intent_system.enable_intent_caching()

# Use faster routing strategy
intent_system.set_routing_strategy("capability_based")

Next Steps

After understanding the Intent System:

  1. A2A Protocol - Learn about the communication protocol
  2. Message Routing - Understand message routing mechanisms
  3. Security - Explore security considerations
  4. LangGraph Integration - Advanced workflow integration

Ready to learn about the protocol? Check out A2A Protocol to understand the communication mechanisms!